

Survey on

DPM (dynamic power management)

 Dynamic power management (DPM) saves power by shutting down idle devices

- In DPM system, the state of operation of various components is dynamically adapted to the required performance level, in an effort to minimize the power wasted by idle or underutilized Components.
- For most system components, state transitions have nonnegligible power and performance costs.

Different embodiments according to the level where DPM is applied

- Component
- System
- Network

State Transitions

An abstract structure of a system-level power manager.

*DPM scheme requires modeling both the components' power/performance behavior and their workload.

PaperClip hardware diagram

Classification

- Predictive Schemes

 static techniques
 Fixed timeout
 Predictive shutdown
 Predictive wakeup
 Adaptive techniques
 - Stochastic optimum control
 1) static techniques
 Based on Markov models
 2) Adaptive techniques
 Based on policy precharacterization, parameter learning, and policy interpolation

• It is very possible to design our own DPM!

Hardware Restriction

- Battery Power
 - Capacity
 - Volume
 - OS should provide power management mechanisms

Hardware Restriction

- Processing Power
 - OMAP L-137
 - ARM926EJ-S + TMS320C6747
 - Freq: 300MHz

Hardware Restriction

- Memory
 - MMU included in ARM core
 - 32K L1P/32K L1D/256K L2 RAM/1024 L2 ROM
 - External Memory Interfaces
 - EMIFA: 16bit SDRAM with 128MB Address Space
 - EMIFB: 16/32 bit SDRAM with 256MB Address Space

Other Problems

ARM/DSP communication

- Interrupts
- Shared Memory
- ?