
 1

Aqua-Sim-NG Developer Tutorial

Table of Contents

Section 1. Configuration and installation. ... 3

Section 2. Sample simulation scripts. .. 4

Section 3. MAC protocol design. .. 15

Section 4. Tests and performance evaluation. .. 28

Section 5. Extra tools. ... 30

Appendix A. Source code of aqua-sim-pure-aloha.h ... 32

Appendix B. Source code of aqua-sim-pure-aloha.cc .. 34

Appendix C. Source code of pureAloha_example.cc ... 38

 2

This tutorial describes a detailed workflow to design, implement and test a sample Medium
Access Control (MAC) protocol for underwater sensor networks in Aqua-Sim-NG plugin for
ns-3.29 network simulator.

In the first section, a step-by-step guide is provided to configure and install the latest version of
Aqua-Sim-NG with ns-3.29 source code.

The second section shows a basic workflow for configuring and running sample simulation
scripts, existing in the standard Aqua-Sim-NG repository. A detailed structure of the simulation
scripts is provided.

The third section focuses on a new MAC protocol development from scratch. The internal
structure of Aqua-Sim-NG simulator is provided, describing basic programming interfaces
between different modules of a network simulation stack. This includes a description of MAC
protocol interfaces between two adjacent layers: network (routing) layer from the top, and the
PHY (channel) layer at the bottom, with the new designed MAC module in-between.

The fourth section focuses on writing simulation scripts with the new MAC module, building
topologies for testing the MAC layer, and describing the built-in methods for gathering general
network statistics for further collection and analysis.

The fifth section, presents an additional set of tools for gathering all simulation details, using ns-
3 trace files. This includes building a visualized replay of network experiments using NetAnim and
calculating some specific network parameters, such as cumulative and instantaneous throughput,
using separate Python-based parsing scripts.

 3

Section 1. Configuration and installation.
(Based on Ubuntu 18.04.2 LTS)

1.1 Basic host system requirements

For running ns-3 simulations with aqua-sim, a Linux-based operating system is needed with the
following requirements:

- recommended Linux distribution: Ubuntu 16.04 or higher, with linux-kernel 4.4.0 or higher.

- gcc compiler version: 5.4.0 or higher

- for Ubuntu, run the following command to install all necessary (and beyond) requirements:

sudo apt-get install build-essential gcc g++ python python3 autoconf cvs bzr

unrar git bunzip2

1.2 Installation

The latest aqua-sim-ng repository is available here:
http://hudson.ccny.cuny.edu/download/aquasim-ng.tgz

To download and unpack the latest source code of aqua-sim-ng with ns-3.29 using the command
line, do the following:

cd ~/

mkdir workspace

cd workspace

wget http://hudson.ccny.cuny.edu/download/aquasim-ng.tgz

tar xvf aquasim-ng.tgz

To install ns-3.29 with aqua-sim, go to ns-3.29 working directory:
(ns-3 working directory is always the directory with waf binary file inside!!!)

cd ~/workspace/aquasim-ng/ns-3.29

./waf clean

cp ./src/applications/model/onoff-application.h ./build/ns3

Configure ns-3. Run the following command:

./waf configure --build-profile=debug --enable-examples --disable-python

The command above will configure ns-3.29 with debug build profile, which allows more detailed
output while running custom network protocols (that’s what we need). During the process, you
may see some warning messages, such as some options were “not enabled”. You can install these
options at a later time when you need them. Some notes on the configure command:

http://hudson.ccny.cuny.edu/download/aquasim-ng.tgz

 4

 enable-examples flag allows running additional simulation script from the examples folder
of any compiled simulation module, including aqua-sim-ng.

 disable-python flag disables additional python-binding to run selected simulation scripts
in Python programming language.

After configuring ns-3, build the simulator codebase, using the following command:

./waf build

This will take approximately 15 minutes, depending on the available CPU resources.

1.3 Validating

After a successful build, you are ready to run simulation scripts and develop custom protocols.

You can also run the test script to verify the installation:

./test.py

Section 2. Sample simulation scripts.

2.1 Running “hello-world” in ns-3

To run a sample simulation script, run the following command:

./waf --run hello-simulator

You should see the following output:

2.1.1 Inside “hello-simulator” script

The “hello-simulator” is the part of ns-3 “tutorial” module located in:

NSHOME=~/workspace

$NSHOME/aquasim-ng/ns-3.29/examples/tutorial/hello-simulator.cc

Let’s take a look on a structure of the “hello-simulator.cc” script, line-by-line:

 5

Line 1: #include "ns3/core-module.h"

Line 2: using namespace ns3;

Line 3: NS_LOG_COMPONENT_DEFINE ("HelloSimulator");

Line 4: int

 main (int argc, char *argv[])

 {

Line 5: NS_LOG_UNCOND ("Hello Simulator");

 }

The script presents a simple C++ program with main function, which returns a “Hello Simulator”
string to standard output, using a built-in ns-3 logging method NS_LOG_UNCOND.

Line 1 imports the core ns-3 module, responsible for running the simulations and logging all the
simulation events.

Line 2 declares the ns-3 namespace, including all the functions, methods and global objects
provided by ns-3.

Line 3 defines the name “HelloSimulator” of the logging component, needed for the debugging
purposes (currently not used).

Line 4 declares the main() function.

Line 5 returns a custom string (“Hello Simulator”) to the standard output, using the default ns-3
method for that - NS_LOG_UNCOND

“hello-simulator.cc” scripts is a very basic structure of ANY ns-3 simulation program. All the
following examples are based on this structure. Additional ns-3 modules (custom and standard)
can be added for running a given simulation scenario – i.e. routing protocol, MAC protocol, the
application layer, mobility model, etc.

2.2 wscript configuration files (script-name bindings)

 6

You might have noticed, that in order to execute the simulation scenario described in “hello-
simulator.cc” script, one must run the following command:

./waf --run hello-simulator

This looks a little bit counter-intuitive, as one might expect to see a path to the binary file of
“hello-simulator.cc” program here, and then executing it.

Instead, ns-3 uses waf tool for building and executing C++ scripts. In the example above, waf tool
was told to run (option --run) a simulation script named “hello-simulator”.

How can waf tool know which simulation script to execute?

For that, waf uses wscript configuration files, which contain a map between the simulation
scripts (in .cc format) and their “execution” names, entered into the command line.

For example, “hello-simulator” corresponds to ../examples/tutorial/hello-simulator.cc script, in
the wscript configuration file. See the corresponding line in ../examples/tutorial/wscript
configuration file:

Note: NS-3 simulator is a very powerful simulation tool, used by many researchers in the
computer networks field. It is free and open source, with large and responsive community.
You may find additional information about ns-3 with detailed and comprehensive tutorial and
extra tips on the official website here: [1-2]. It is highly encouraged to have a look on the tutorial
and run the official examples/tutorial scripts to get familiar with the basic concepts of building
and running sample simulation scripts.

Next, we will focus on the aqua-sim-ng plugin for ns-3. We will run standard examples of some
classic routing and MAC protocols for underwater sensor networks and get familiar with the main
modules required for running the simulations.

2.3 Aqua-sim-ng extension for ns-3

 7

Aqua-sim-ng presents a dedicated module which embeds into ns-3 simulator, as any other
module including the standard ones, included in ns-3 by default. The examples of the standard
modules are: aodv, lte, wifi, network, internet, etc. Additional information about the standard
ns-3 modules can be found in the ns-3 “model library” here [3].

All the modules, including the standard and the custom ones, such as aqua-sim-ng, are located
in src/ folder in the ns-3 working directory:

Aqua-sim-ng module has a similar subfolder structure like any other ns-3 module. Let’s have a
look at it:

ls -l aqua-sim-ng

This command lists the folders in Aqua-sim-ng. Below explains the contents of the folders.

- doc:
Contains module documentation in .rst format.

- documentation:
Contains more detailed user-oriented documentation, usually in .pdf format.

- examples:
Contains example script for running the simulations with aqua-sim network and MAC protocols.

- helper:
Contains helper modules for compiling and running the modules in a single simulation scripts.

- model:

 8

Main folder which contains all the communication modules, related to aqua-sim-ng. Such as:
MAC protocols (ALOHA, Broadcast MAC, etc.), routing protocols (VBF, DBR, Static, etc.), physical
channel models, etc.

All available aqua-sim-ng libraries are shown in the diagram below:

- test:
Contains additional simulation scripts for testing specific modules in the model.

- wscript configuration file:
Contains mapping between the actual simulation examples and their execution names needed
for waf builder tool to run the simulations.

2.4 Aqua-sim-ng simulation script

As for the simulation script example, a simple broadcast MAC protocol is taken.

The simulation script for Broadcast MAC already exists in the examples/ subfolder under
src/aqua-sim-ng/ module, so in order to execute the script, run the following command:

./waf --run broadcastMAC_example

The command above builds and executes a C++ script, located here: aqua-sim-
ng/examples/broadcastMAC_example.cc (as can be checked in the wscript configuration file)

broadcastMAC_example.cc describes a simple simulation scenario with a total of 4 nodes (3
senders and 1 sink), placed in a line, with 100 meters in-between each other (see lines 97 and
108 in the source code below). All 3 nodes generate a constant on-off packet traffic, defined in

 9

the on-off-application module towards a single sink-node. BroadcastMac module is used on a
MAC layer, with DummyRouting module on the routing layer, which is specifically used for
testing MAC-layer protocols. Default simulation time is defined by simStop variable, set to 100
seconds (see line 45).

Let’s have a look at some more contents of the script, highlighting the main parts of the
simulation scenario created there, from top to bottom:

Lines 21-27:

Import all the ns-3 modules, needed for constructing given simulation scenario:

- ns3/core-module.h:
Needed for running the simulations (scheduling and parsing discrete simulation events), and for
debugging purposes.

- ns3/network-module.h:
This module is responsible for creating the network nodes/devices and allocating necessary
network interfaces in-between the layers.

- ns3/mobility-module.h:
This module is needed for allocating the network nodes into a specific topology – either static or
dynamic, according to the specified mobility model (e.g. random-waypoint mobility model).

- ns3/aqua-sim-ng-module.h:
This is the main module required for running underwater protocol stack. It configures and installs
the given network protocol stack into the allocated network nodes.

- ns3/applications-module.h:
This module is needed for configuring and generating packet traffic into the configured network.
This includes defining application packet rate (packets/sec), traffic profile and overall duration.

- ns3/log.h:
Needed for logging simulation events.

- ns3/callback.h:

 10

Needed for collecting additional simulation information using ns-3 trace-files (described in the
Section 5).

Lines 42-50:

- define main() function to run simulations
- define some local variables needed for initial configuration:
 - simStop: simulation duration
 - nodes: number of sender-nodes in a network
 - sinks: number of sink-nodes (receive-nodes) in a network
 - m_dataRate: application data rate, bps
 - m_packetSize: packet size of every generated packet, Bytes

Lines 54-59:

Add some “changeable” configuration parameters, which can be modified “on-the-fly”, as a
dedicated argument to waf command.

For example, to run this script with the modified parameters, one can run the following
command, explicitly specifying the parameters being changed:

./waf --run “broadcastMAC_example --simStop=1000 --nodes=5 --sinks=2”

Lines 63-70:

 11

Create nodes/sinks entities (empty so far) and the corresponding network socket interfaces (for
sending/receiving generated packets).

Lines 72-78:

Line 73: Create AquaSimChannelHelper class. This class is used for creating and

configuring a lower-layer acoustic PHY-model.

Initialize the first 3 layers of a communication stack – physical layer (channel model), MAC layer
and Routing (network) layer, using the main helper class called AquaSimHelper:

Line 75: Create AquaSimHelper class. This is the main helper class in aqua-sim, which sets

and configures the routing- and MAC layer-models, as well as channel-helper class
to a node’s NetDevice.

Line 76: SetChannel() – setting PHY layer
Line 77: SetMac() – establishing BroadcastMac model on the MAC layer
Line 78: SetRouting() – setting a simple routing protocol AquaSimRoutingDummy
designed specifically for testing MAC layer models.

Lines 80-110:

 12

Allocate nodes/sinks onto a 3D-space using the allocation Vector named boundary. For every
node, update the allocation vector and add it as a node position into a position allocator. Iterate
though every node/sink, using the node containers, initialized earlier.

A position allocator is used for defining positions of the Nodes in 3D space, following the given
position patterns, depending on a type of a position allocator, such as: lists, grids, disks, random
boxes, etc. Some examples of different position allocators, available in NS-3:

- ListPositionAllocator:

Store the nodes’ positions as a vector with (x, y, z) coordinates in a list.

- GridPositionAllocator:
Configure dimension parameters of a grid (i.e., x-step, y-step, height and length), and place
the nodes at the corners of every cell in the grid.

- RandomRectanglePositionAllocator:

Place nodes randomly inside a given rectangle, according to a specified probability
distribution.

 13

- UniformDiscPositionAllocator:
Place nodes uniformly randomly inside a disk with specified dimensions – (x ,y)-center of the
disk and its radius.

Note:
There are 3 main components of any NS-3 script, used for constructing a simulation scenario:

- NodeContainer:
NodeContainer is used to store a key NS-3 abstraction, called a Node. A Node represents a
computer with network protocol stacks, attached to physical channel via a NetDevice – another
key NS-3 abstraction, which can be interpreted as a modem or a Network Interface Card (NIC),
connecting a computer to a physical communication medium - a channel.
The NodeContainer provides a way to create, manage and access the Node object, which are
created in the simulation script.
Lines 63-64 above declare node containers for both sender-nodes and sink-nodes. The following
lines 65-66 create a given number of nodes, using Create() method of the NodeContainer class.

- NetDeviceContainer:
NetDeviceContainer is used to create and store NetDeivce objects for the created nodes. A
NetDevice object is another basic NS-3 abstraction which can be imagined as a Network
Interface Card (NIC), used for connecting a node to physical channel of the network. A NetDevice
object “wires together” a model of a given physical layer (channel) to a given stack of L2-L5
protocols, defined and configured in Node objects.

- Helper classes:
Various Helper classes are used in NS-3 to create and configure a given model of L1-L5 layer and
attach it to the Nodes or NetDevices, using Install() method. For example, the lines 123-127 in
the source code below create and configure a helper instance of the OnOffApplication model,
named OnOffHelper. Line 129 then installs the configured application model to the Node-
objects, stored in the given NodeContainer.

For more information about the NodeContainers, NetDevices and Helper, see a well-described,
scripting example from official NS-3 tutorial, available here:
https://www.nsnam.org/docs/release/3.7/tutorial/tutorial_18.html

Line 83: Initialize a mobility model, used further down in the lines 113-116.

Line 84: Create a container class for storing the NetDevice objects. This container is used

for iterating and setting the device’s positions in the following for-loops.

Lines 113-116:

 14

For every allocated node’s positions, set a static mobility model, which fixes the nodes into the
positions and does not allow them to move during the simulation (ConstantPosition mobility
model).

Lines 118-121:

Line 120: set physical address and create a receive-socket interface for a sink-node (receive-

node), which has the ID number of 3 (equaled to the overall number of sender-
nodes).

Line 121: Set the ID of the routing protocol. In all aqua-sim models, this parameter is set

to 0.

Note: the code above allows initialization of a single sink only. If one needs to create multiple
sinks (destination-nodes), one must iterate over all desired sinks, create application helper for
them, and specify the destination socket-address. The example of such code can be found here:
https://github.com/dugdmitry/aqua-sim-
ng/blob/mac_routing_dev/examples/sfama_grid_test.cc#L174

Lines 123-131:

Define an application layer, using ns-3-provided, on-off-application model, located in
src/applications/

Some more information about the ns-3 on-off-application can be found in the official ns-3 library
documentation here: https://www.nsnam.org/doxygen/classns3_1_1_on_off_application.html

https://www.nsnam.org/doxygen/classns3_1_1_on_off_application.html

 15

Specify on-off application properties:

- OnTime – percentage of time a node is sending a packet
- OffTime – percentage of time a node is not sending a packet
- DataRate – number of packets a node sends per second
- PacketSize – size of every packet, in Bytes

Also, install the application to every node (excluding the sink), and specify when the application
starts and stops throughout the simulation run.

Lines 134-138:

Bind a receive-socket at the sink-node, so that the sink-node is able to receive the incoming
packets from the sender-nodes. This procedure is necessary since the application and the
corresponding sockets have been installed only on the sender-nodes upon this point.

Lines 150-158:

Enable additional functions for debugging, configure the stop-time of the entire simulation (line
152), run the simulation (line 153) and schedule the simulation destruction (line 154) when the
simulation stops. Return 0 in the main function to indicate a successful execution.

Section 3. MAC protocol design.

This section describes a development process of a new MAC protocol module for aqua-sim-ng.
MAC protocols are located on layer 2 (L2) of OSI, which means that they are located in-between
routing (L3) and channel (L1 - PHY) modules. Therefore, MAC module in aqua-sim-ng uses the
following set of interfaces (methods) to communicate with the adjacent layers:

 16

send_up():

This method is used by MAC layer to send a packet up to the stack (to the routing layer).

recv_up():

This method is used by MAC layer to receive a packet from the upper layer.

send_down():

Send a packet down to PHY layer.

recv_down():

Receive packet from PHY layer.

3.1 Pure ALOHA MAC protocol design

As for the example of a MAC protocol design, we will use a very simple MAC protocol used in old-
generation wireless networks.

It has the following logical workflow, from top (L3) to bottom (L1):

1) Routing layer sends a packet down to MAC layer
2) MAC layer receives a packet from the routing layer (recv_up call) and puts it into a MAC

send queue (FIFO queue)
3) MAC layer gets a packet from queue
4) Sleep for random time interval
5) If net_device is IDLE, send packet down to PHY layer (send_down call)
6) Go to next packet (step 3)

 17

From bottom (PHY) to the top (Routing):

1) MAC layer receives a packet from PHY layer (recv_down call)
2) Check if destination address of the incoming packet matches with the node’s address
3) If yes, MAC layer sends a packet up to the stack (send_up call)

3.2 MAC module structure

Every module in ns-3 is written in C++, including this pure ALOHA example. Therefore, for our
new module, we need to create 2 files:

- aqua-sim-mac-pure-aloha.h
- aqua-sim-mac-pure-aloha.cc

The first .h file contains a declaration of classes, methods and variables, necessary for the MAC
implementation.
The second .cc file contains an implementation of these classes, methods and variables. Both files
should be located under model/ subfolder in aqua-sim-ng.

3.2.1 Declaring aqua-sim-mac-pure-aloha.h source file

Complete source code can be found in Appendix A.
Here is the description of main components of the module

Line 21-37:

 18

- Creating main constructor and destructor of AquaSimPureAloha class
- Inheriting TxProcess() and RecvProcess() methods from the parent AquaSimMac class for

overriding
- Creating methods for:

o Scheduling packet transmission event: SendPacket()
o Actual packet sending to PHY: SendDownPacket()
o Generating a backoff value before sending: GetBackoff()

- Inheriting DoDispose() method – for clearing out the memory after simulation
destruction.

Line 42-49:

Create some private class variables, such as:

- m_rand – store random-number generator to generate backoff values
- m_send_queue – store the packets, coming from L3, in a send queue

3.2.2 Implementing aqua-sim-mac-pure-aloha.cc source file

 19

Complete source code can be found in Appendix B.
Here is the description of main components of the module:

Line 18-47:

- Defining Logging components (lines 18-19)
- Declaring the constructor, with m_rand variable initialization (lines 22-25)
- Declaring the destructor (lines 27-29)
- Assigning TypeId attributes (lines 31-39)
- Assigning and setting a random variable stream, used to derive random values from ns-3

pseudo-random generator class (lines 41-47). See a detailed info on ns-3 random
variables here:
https://www.nsnam.org/docs/manual/html/random-variables.html

 20

All NS-3 classes are inherited from the base-class, called ns3::Object. Consequently, every child
class of Object class also inherits and overrides a metadata class called TypeId, which is used to
store a unique information about a given class, such as:

- Unique string identifier, i.e. ns3::AquaSimPureAloha (line 34 above)
- Information about the base class of the given class: i.e., AquaSimMac (line 35)
- Set of available constructors to execute (line 36)

A detailed information about the ns3::Object base class, smart-pointers and how they build a
foundation of any NS-3 module, can be found here:
https://www.nsnam.org/docs/release/3.9/manual/manual_31.html

Lines 52-78:

This is the first method for processing the packets coming from the upper layers. It checks packet
address fields and puts an incoming packet into a send queue.

- Log a reception time of a packet (line 55)
- Remove packet header (line 57), update the header fields (lines 58-60)
- Log the transmission time of the packet, based on its size (line 61)
- Add the updated header back to the packet (line 63)

https://www.nsnam.org/docs/release/3.9/manual/manual_31.html

 21

- Put packet in the queue (lines 66-75):
o If queue is empty --> put packet in queue, call the transmission method
o If queue is not empty --> just put packet in the queue and return

Lines 80-108:

This is the method for performing the actual packet transmission – sending it down to PHY
(channel) layer.

- Update some packet header fields again (line 82-85)
- Create a MAC header and update its fields (line 87-91):

o Set destination address (DA) to MAC header
o Set source address (SA)
o Add packet and MAC headers back to initial packet

- Check the net_device status. If it is busy --> do additional random backoff. If it is IDLE -->
send packet immediately (line 96-107):

o Check net_device transmission status (line 96)
o Send down packet immediately, calling the parent’s class (line 99)
o Go to next packet in the queue (line 101)
o Schedule this method call once again, after additional random backoff (line 106)

 22

Lines 110-114:

Use the m_rand variable object to get a random value in-between [0.1, 1.0] range.

Lines 116-134:

This method gets a packet from send FIFO queue and schedules the actual packet transmission,
after selecting a random backoff value.

- Log this method call (line 119)
- Return, if the send queue is empty (line 122-125)
- If queue is not empty, get a packet from it (line 128-129)
- Schedule the actual transmission after backoff value seconds (line 132)

 23

Lines 135-164:

This method receives the packets, coming from PHY layer.

- Log address of the node receiving a packet (line 138)
- Read the header fields in both packet and MAC headers (line 139-143)
- If the packet is received with errors (check the error flag in the header) --> drop it and

return (line 146-151)
- If the packet is received without errors, check the destination address of the packet. If the

destination address matches with the node address --> send packet up to the stack (line
154-161)

Line 166-170:

 24

Call the parent’s disposal method, after the simulation is completed.

3.2.3 Additional declarations for waf builder

For the waf builder to see the new .h and .cc modules, their names should be added into waf
configuration file – wscript, located in the main aqua-sim-ng/ main folder:

3.2.3 Compile the source code

To compile the new source code, run the following command:

./waf build

If the compilation is successful, you should see the following output:

 25

3.2.4 Debugging

There are multiple types of bugs/errors which might occur during the writing of NS-3 scripts or
NS-3 modules in C++. In general, these types of errors can be categorized as:

1) Compilation/build errors:

These types of errors occur when a C++ compiler cannot build a source code due to either syntax
or type errors, specific to C++ programming language. If such an error occurs, you would see an
error output after running ./waf build command.

Here is the example error-output, occurred due to a syntax error:

In the error-output above, you can see a description of an error and its location in the code. Here,
a distance variable was tried to be used before its actual declaration in the code – line 109,
position 42.

2) Runtime errors:

These errors usually occur when a specific variable, pointer or a class object has been “lost” in
the code and, therefore, is pointing to a wrong location in a memory. This also applies to some
C++ data structures, such as std::vector or std::map, when a program tries to reach an element
outside the current boundaries of that structure.

A sample error-output below throws out an SIGSEGV error during the runtime, because a
program tried to access an “empty” pointer (a pointer, which was declared in .h source file, but
was never initialized/created in the actual .cc declaration):

 26

As can be noticed, there is no specific “compilation error”, which could indicate to an exact
reason of such an error. Therefore, in order to debug such type of errors, the developers usually
rely on a few tools:

- Using custom “breakpoints”, inserted in the source code:

To locate a place in the code, where a runtime error occurs, a developer might insert some
special lines in the code, which would output some additional useful information (i.e., a value
of some variable or the contents of a data structure) during the runtime. When a runtime
error occurs, one can take a look at the debug output at trace the error back to the source.

These breakpoints can also stop a program execution, if some condition inside a program’s
state is incorrect. See more info about Assertions in NS-3 documentation here:
https://www.nsnam.org/doxygen/group__assert.html

- Use GDB debugger:
This is a more “advanced” tool, compared to the previous method, which allows a step-by-
step execution of a program, examining every internal state of a program in-between the
steps (GDB breakpoints). The GDB debugger uses its own command-syntax. Some additional
information on how to use GDB in NS-3 debugging can be found here:

 https://www.nsnam.org/doxygen/group__assert.html

 https://www.nsnam.org/wiki/HOWTO_use_gdb_to_debug_program_errors

3) Logical errors in NS-3 scripts or modules:

These types of errors occur when an output/result from an NS-3 program is different from the
expected outcome. This might happen, for example, when there are no received packets during
the entire simulation run, when a custom MAC protocol is used. Or, if a simulation script allocates
the nodes in such a way, which they are too far from each other (outside the maximum
transmission range), etc.

Such types of errors/misbehaviors are more difficult to debug, since a possible error can occur
on any layer of a program, depending on its structure.

In such a case, the first thing which should be done is to narrow down a scope of the problem by
trying to replace certain modules in the simulation program to the similar ones. For example, if
there are no packets received when a BroadcastMac module is used, but the packets start to be

https://www.nsnam.org/doxygen/group__assert.html

 27

received when a MAC layer is changed from BroadcastMac to PureAloha module, the problem
is clearly in the BroadcastMac module.

Secondly, when a particular module where a problem occurs is identified (BroadcastMac module
in this example), we can enable a debug-output for that particular module as the program is
running. For example, in order to run a sample broadcastMac scenario with the additional debug
information enabled, the following flags should be added to a corresponding command:

./waf --run broadcastMAC_example NS_LOG=AquaSimBroadcastMac=level_all

The command above specifies an additional debug-output of AquaSimBroadcastMac module to
a terminal. A part of the debug-output is shown below:

From the output above, a user can see Tx/Rx events, happened on the MAC layer during the
simulation. This might lead to a source of the problem a user is looking for. A user can specify

 28

virtually any NS-3 module in the debug-output by calling its named, specified in its TypeId
declaration.

3.3 Creating a simulation script

Now let’s create a simulation script with our developed pure ALOHA MAC module. For that, let’s
use the simulation script for broadcast MAC (broadcastMAC_example) from the section 2.4.

1) Duplicate the broadcastMAC_example.cc script and rename it to pureALOHA_example.cc, and
change the MAC protocol definition inside the script on line 77:

- Replace asHelper.SetMac("ns3::AquaSimBroadcastMac") with:
- asHelper.SetMac("ns3::AquaSimPureAlohaMac")

2) Add the script definition into wscript configuration file under aqua-sim-ng/examples/ folder:

3) Run the script, using the same ./waf command we used for broadcastMAC:

./waf --run pureAloha_example

The script should compile all the new modules and run the simulation:

Complete source code of pureAlohe_example.cc is given in Appendix C.

Section 4. Tests and performance evaluation.

To tests the developed protocol, we can use the following approach:

 29

- try different network topologies:

o complete graph with N nodes
o star topology
o line topology, etc.
o dynamic topologies (when nodes move during the simulation, according to the

mobility models)

- experiment with the network traffic:
o change the packet rate on the nodes
o vary a number of sources (the nodes which generate traffic) and destinations
o change total simulation/application duration

- measure network performance parameters:

o Network throughput
o Packet Delivery Ratio (PDR)
o End-to-end packet delay
o Energy consumption per packet

4.1 Channel methods

Aqua-sim-ng provides a standard method for gathering and presenting some generic statistics
from the simulation runs. This method is called PrintCounters() and can be inserted into the
simulation script using the following code:

asHelper.GetChannel()->PrintCounters();

See the last lines of pureAloha_example.cc (line 140):

PrintCounters() method outputs the following metrics:

- Sent Pkts(Source_NetDevice->Stack):
Total amount of sent packets

- SendUp Pkts(Sink_RoutingLayer):
Total amount of successfully received packets

 30

- Recv Pkts(@PhyLayer):
Number of packets, which reached the receivers (including the collided ones).

- TotalEnergyConsumption:
Total energy spent for transmitting/receiving packets throughout the simulation, in Joules.

4.1.1 Example

In the previous pureALOHA_example.cc script, after Simulator::Run() line, add the following:

asHelper.GetChannel()->PrintCounters();

After running the script, you should see the following output:

Section 5. Extra tools.

This section will cover some additional tools for NS-3 simulator, useful for deeper analysis of the
simulation results.

5.1 Trace files

NS-3 trace tool provides a very powerful way to obtain any information about any simulation
event, happened during the simulation.

This tool is based on C++ callbacks, which are inserted into the desired parts of the code, logging
all the events going through it. The logs are then saved in .asc format and can be post-processed
(parsed) using custom-written parsers, using e.g. Python language.

5.1.1 Enabling trace files

To enable trace-files in a simulation script, one should insert the following lines at the end of a
simulation program, right before Simulator::Run(); line:

 31

Line 155: Specify name of a trace-file.
Line 156-160: Create a trace file in the same directory. Overwrite any file with the same

name.
Line 161: Call EnableAsciiAll() method in aqua-sim-helper to allow executing Tx/Rx

trace-callbacks on PHY-layer during a simulation run. This will write every
Tx/Rx event, happened in the simulation, to an .asc file for further analysis.

5.2 Network visualization

In NS-3, the topological information from a given simulation scenario can be visualized using
NetAnim tool [4]. This tool provides a separate AnimationInterface() class, which writes
simulation events to a separate .xml file in a pre-defined format. Then, a separate ./netanim tool
is executed, animating the events stored in the .xml file.

References

1. https://www.nsnam.org/documentation/

2. https://www.nsnam.org/docs/release/3.30/tutorial/html/index.html

3. https://www.nsnam.org/docs/models/html/index.html

4. https://www.nsnam.org/wiki/NetAnim_3.105

https://www.nsnam.org/documentation/
https://www.nsnam.org/docs/release/3.30/tutorial/html/index.html
https://www.nsnam.org/docs/models/html/index.html
https://www.nsnam.org/wiki/NetAnim_3.105

 32

Appendix A. Source code of aqua-sim-pure-aloha.h

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

/*

 */

#ifndef AQUA_SIM_MAC_PURE_ALOHA_H

#define AQUA_SIM_MAC_PURE_ALOHA_H

#include "aqua-sim-mac.h"

#include "ns3/event-id.h"

#include "ns3/random-variable-stream.h"

#include "ns3/packet.h"

namespace ns3 {

/**

 * \ingroup aqua-sim-ng

 *

 * \brief Implementation of Pure ALOHA for underwater channel

 */

class AquaSimPureAloha: public AquaSimMac

{

public:

 AquaSimPureAloha();

 ~AquaSimPureAloha();

 static TypeId GetTypeId(void);

 int64_t AssignStreams (int64_t stream);

 virtual bool TxProcess(Ptr<Packet> pkt);

 virtual bool RecvProcess(Ptr<Packet> pkt);

 void SendPacket();

 void SendDownPacket(Ptr<Packet> pkt);

 double GetBackoff();

 virtual void DoDispose();

protected:

private:

 Ptr<UniformRandomVariable> m_rand;

 std::queue<Ptr<Packet>> m_send_queue;

 33

}; // class AquaSimPureAloha

} // namespace ns3

#endif /* AQUA_SIM_MAC_PURE_ALOHA_H */

 34

Appendix B. Source code of aqua-sim-pure-aloha.cc

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

/*

 */

#include "aqua-sim-mac-pure-aloha.h"

#include "aqua-sim-header.h"

#include "aqua-sim-header-mac.h"

#include "ns3/packet.h"

#include "ns3/log.h"

#include "ns3/random-variable-stream.h"

#include "ns3/simulator.h"

namespace ns3{

NS_LOG_COMPONENT_DEFINE("AquaSimPureAloha");

NS_OBJECT_ENSURE_REGISTERED(AquaSimPureAloha);

//construct function

AquaSimPureAloha::AquaSimPureAloha() : AquaSimMac()

{

 m_rand = CreateObject<UniformRandomVariable> ();

}

AquaSimPureAloha::~AquaSimPureAloha()

{

}

TypeId

AquaSimPureAloha::GetTypeId(void)

{

 static TypeId tid = TypeId("ns3::AquaSimPureAloha")

 .SetParent<AquaSimMac>()

 .AddConstructor<AquaSimPureAloha>()

 ;

 return tid;

}

int64_t

AquaSimPureAloha::AssignStreams (int64_t stream)

{

 NS_LOG_FUNCTION (this << stream);

 m_rand->SetStream(stream);

 35

 return 1;

}

/*=========================== Send and Receive ===========================*/

// Receive packet from L3 upper layer

bool AquaSimPureAloha::TxProcess(Ptr<Packet> pkt)

{

 NS_LOG_FUNCTION(m_device->GetAddress() << pkt << Simulator::Now().GetSeconds());

 AquaSimHeader asHeader;

 pkt->RemoveHeader(asHeader);

 asHeader.SetTxTime(GetTxTime(asHeader.GetSize()));

 asHeader.SetErrorFlag(false);

 asHeader.SetDirection(AquaSimHeader::DOWN);

 NS_LOG_INFO("Transmission time: "<< asHeader.GetTxTime ().GetSeconds () << " seconds");

 pkt->AddHeader(asHeader);

 // Start sending, if queue is empty

 if (m_send_queue.size() == 0)

 {

 // Push packet to MAC send queue

 m_send_queue.push(pkt);

 SendPacket();

 }

 else

 {

 m_send_queue.push(pkt);

 }

 return true;

}

void AquaSimPureAloha::SendDownPacket(Ptr<Packet> pkt)

{

 AquaSimHeader asHeader;

 pkt->RemoveHeader(asHeader);

 asHeader.SetDirection(AquaSimHeader::DOWN);

 MacHeader mach;

 mach.SetDA(asHeader.GetDAddr());

 mach.SetSA(AquaSimAddress::ConvertFrom(m_device->GetAddress()));

 pkt->AddHeader(mach);

 pkt->AddHeader(asHeader);

 // Check net_device status

 36

 // If it is IDLE, send packet down to PHY immediately

 // otherwise, do random backoff again

 if (m_device->GetTransmissionStatus() == TransStatus::NIDLE)

 {

 // Call parent method to send packet down to PHY

 SendDown(pkt);

 // Go to next packet in queue

 SendPacket();

 }

 else

 {

 // Do another backoff

 Simulator::Schedule(Seconds(GetBackoff()), &AquaSimPureAloha::SendDownPacket, this, pkt->Copy());

 }

}

// Return a random number in-between given range

double AquaSimPureAloha::GetBackoff()

{

 return m_rand->GetValue(0.1, 1.0);

}

// Try to send packet to PHY layer, after backoff

void AquaSimPureAloha::SendPacket()

{

 NS_LOG_FUNCTION(this);

 // If queue is empty -> nothing to send -> return

 if (m_send_queue.size() == 0)

 {

 return;

 }

 // Get packet from queue

 Ptr<Packet> pkt = m_send_queue.front();

 m_send_queue.pop();

 // Get random backoff time from [0.1, 1.0] sec interval, schedule transmission

 Simulator::Schedule(Seconds(GetBackoff()), &AquaSimPureAloha::SendDownPacket, this, pkt->Copy());

}

// Receive packet from PHY

bool AquaSimPureAloha::RecvProcess(Ptr<Packet> pkt)

{

 NS_LOG_FUNCTION(m_device->GetAddress());

 AquaSimHeader asHeader;

 MacHeader mach;

 pkt->RemoveHeader(asHeader);

 37

 pkt->RemoveHeader(mach); //not used, leave off.

 pkt->AddHeader(asHeader);

 // If a packet experienced collisions / channel errors (ErrorFlag is true), drop it

 if(asHeader.GetErrorFlag())

 {

 NS_LOG_INFO("Packet:" << pkt << " error/collision on node " << m_device->GetNode());

 pkt=0;

 return false;

 }

 // Send packet up to the routing layer, if the destination address matches with this node

 AquaSimAddress node_address = AquaSimAddress::ConvertFrom(m_device->GetAddress());

 AquaSimAddress dst_address = mach.GetDA();

 if (node_address == dst_address)

 {

 // Send packet up to L3 layer

 SendUp(pkt);

 }

 return true;

}

void AquaSimPureAloha::DoDispose()

{

 NS_LOG_FUNCTION(this);

 AquaSimMac::DoDispose();

}

} // namespace ns3

 38

Appendix C. Source code of pureAloha_example.cc

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

/*

 */

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/mobility-module.h"

#include "ns3/aqua-sim-ng-module.h"

#include "ns3/applications-module.h"

#include "ns3/log.h"

#include "ns3/callback.h"

/*

 * PureAlohaMAC

 *

 * String topology:

 * N ----> N -----> N -----> N* -----> S -----> S*

 *

 */

using namespace ns3;

NS_LOG_COMPONENT_DEFINE("PureAlohaMacTest");

int

main (int argc, char *argv[])

{

 double simStop = 100; //seconds

 int nodes = 3;

 int sinks = 1;

 uint32_t m_dataRate = 128; //bps

 uint32_t m_packetSize = 40; //bytes

 double range = 3000; //meters

 LogComponentEnable ("PureAlohaMacTest", LOG_LEVEL_INFO);

 //to change on the fly

 CommandLine cmd;

 cmd.AddValue ("simStop", "Length of simulation", simStop);

 cmd.AddValue ("nodes", "Amount of regular underwater nodes", nodes);

 cmd.AddValue ("sinks", "Amount of underwater sinks", sinks);

 cmd.Parse(argc,argv);

 std::cout << "-----------Initializing simulation-----------\n";

 39

 NodeContainer nodesCon;

 NodeContainer sinksCon;

 nodesCon.Create(nodes);

 sinksCon.Create(sinks);

 PacketSocketHelper socketHelper;

 socketHelper.Install(nodesCon);

 socketHelper.Install(sinksCon);

 //establish layers using helper's pre-build settings

 AquaSimChannelHelper channel = AquaSimChannelHelper::Default();

 channel.SetPropagation("ns3::AquaSimRangePropagation");

 AquaSimHelper asHelper = AquaSimHelper::Default();

 asHelper.SetChannel(channel.Create());

 asHelper.SetMac("ns3::AquaSimPureAlohaMac");

 asHelper.SetRouting("ns3::AquaSimRoutingDummy");

 /*

 * Set up mobility model for nodes and sinks

 */

 MobilityHelper mobility;

 NetDeviceContainer devices;

 Ptr<ListPositionAllocator> position = CreateObject<ListPositionAllocator> ();

 Vector boundry = Vector(0,0,0);

 std::cout << "Creating Nodes\n";

 for (NodeContainer::Iterator i = nodesCon.Begin(); i != nodesCon.End(); i++)

 {

 Ptr<AquaSimNetDevice> newDevice = CreateObject<AquaSimNetDevice>();

 position->Add(boundry);

 devices.Add(asHelper.Create(*i, newDevice));

 NS_LOG_DEBUG("Node:" << newDevice->GetAddress() << " position(x):" << boundry.x);

 boundry.x += 100;

 newDevice->GetPhy()->SetTransRange(range);

 }

 for (NodeContainer::Iterator i = sinksCon.Begin(); i != sinksCon.End(); i++)

 {

 Ptr<AquaSimNetDevice> newDevice = CreateObject<AquaSimNetDevice>();

 position->Add(boundry);

 devices.Add(asHelper.Create(*i, newDevice));

 NS_LOG_DEBUG("Sink:" << newDevice->GetAddress() << " position(x):" << boundry.x);

 boundry.x += 100;

 newDevice->GetPhy()->SetTransRange(range);

 40

 }

 mobility.SetPositionAllocator(position);

 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");

 mobility.Install(nodesCon);

 mobility.Install(sinksCon);

 PacketSocketAddress socket;

 socket.SetAllDevices();

 socket.SetPhysicalAddress (devices.Get(nodes)->GetAddress()); //Set dest to first sink (nodes+1 device)

 socket.SetProtocol (0);

 OnOffHelper app ("ns3::PacketSocketFactory", Address (socket));

 app.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));

 app.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));

 app.SetAttribute ("DataRate", DataRateValue (m_dataRate));

 app.SetAttribute ("PacketSize", UintegerValue (m_packetSize));

 ApplicationContainer apps = app.Install (nodesCon);

 apps.Start (Seconds (0.5));

 apps.Stop (Seconds (simStop + 1));

 Ptr<Node> sinkNode = sinksCon.Get(0);

 TypeId psfid = TypeId::LookupByName ("ns3::PacketSocketFactory");

 Ptr<Socket> sinkSocket = Socket::CreateSocket (sinkNode, psfid);

 sinkSocket->Bind (socket);

/*

 * For channel trace driven simulation

 */

/*

 AquaSimTraceReader tReader;

 tReader.SetChannel(asHelper.GetChannel());

 if (tReader.ReadFile("channelTrace.txt")) NS_LOG_DEBUG("Trace Reader Success");

 else NS_LOG_DEBUG("Trace Reader Failure");

*/

 Packet::EnablePrinting (); //for debugging purposes

 std::cout << "-----------Running Simulation-----------\n";

 Simulator::Stop(Seconds(simStop));

 Simulator::Run();

 // Enable stats output

 asHelper.GetChannel()->PrintCounters();

 41

 Simulator::Destroy();

 std::cout << "fin.\n";

 return 0;

}

