OS Components



Memory management

Present on most conventional OS

Each process has

— its own address space

— (a feeling of) contiguous memory

Pros

— Security: a process’ memory is separated from the others’
— Facilitating application programming

Cons

— Requiring dedicated hardware to be efficient 2> page
replacement strategy?

— External storage is also needed



System calls

A mechanism for a program to request service
from an OS’ kernel

Separation of user level from kernel level: a
desired feature

Implemented using interrupt or dedicated
Instructions

Some operating systems wrap system calls
inside APl (Windows) — desirable if there're
many applications



TinyOS

No kernel, more like a programming library
Single process

Multithreading since TinyOS 2.1

No virtual memory

No dynamic memory allocation

Powerful supporting toolchain



TinyOS’ threads

Fully preemptive, round robin, 5ms time sliced
Fixed number of threads

One kernel thread & multiple application
threads

Kernel thread has higher priority over
application threads

Application threads run with the same priority



TinyOS’ threads

Thread Kernel Task Application Syscall Task
Scheduler Thread Scheduler Thread API
Initialize Boot up
code

Boot up

Run task

Pick a task
< ________________________________________




TinyOS’ threads

Thread Kernel Task Application Syscall Task
Scheduler Thread Scheduler Thread API

Schedule

Timer
Interrupt

AN Pick a task >‘I
alting

Issue

Otherwise I
Post a >ysca
task




TinyOS’ threads

Kernel
Thread

Task
Scheduler

Thread

Application Syscall

Scheduler

Process

data

Interrupt
P Post [a task

Pick a task

Run task
< ________________________________________




Mantis OS’ threads

Fully preemptive, round robin, time sliced
Fixed number of threads

Single process

Unix-like thread scheduler



. V4
Mantis OS’ threads
Thread Semaphore Application Device
Scheduler List Thread Driver
Timer

Interrupt

I Hardware
_________________________ Interrupt

Run thread I

< Process
Post a semaphore data




