
JamesJames

1

Overview
� Not freeware

� Portable

� Small footprint

Scalable� Scalable

� Pre-emptive multitasking

� Real-time

2

Ports
� Mainly written in C

� Has some assembly for target-specific code

� Support many processors and boards:

� ARM
� Atmel
� Freescale/Motorola
� Fujitsu
� IBM
� Intel
� Microchip
� Misubishi
� NEC
� TI
� etc.

3

OS Footprint
� It’s only an OS kernel, nothing else

� Less than 10k lines

� 6~24 Kbytes

� Depending on applications

4

Multi-Tasking
� MicroC/OS-II supports multiple tasks

� Up to 64 tasks
� Up to 8 system tasks
� Each task has a unique priority

� Task stack
� Each task has its own stack� Each task has its own stack
� Stack size can be different

� Task states:
� Dormant
� Ready
� Running
� Waiting
� Interrupt

� User tasks must be created first
� Each task is an infinite loop
� Shared resources are protected by semaphores

5

Scheduling and interrupts
� MicroC/OS-II is fully preemptive

� Always runs the highest priority task that is ready

� Tasks can be preempted by interrupts at any time

� Support nested interrupts

� Up to 256 levels

� Interrupt handler will use the stack of the interrupted task

6

Implementation

� Initialization and startup
� OSInit()

� Used to initialize the internals of the OS
� Ready list
� TCB list

Message queue� Message queue
� OS event list

� Must be called prior to create any object
� Must be called before OSStart
� Create an idle task

� lowest priority
� Cannot be deleted
� Can be used to implement power management

� Call port specific initialization code

� OSStart()
� Must have task(s) created before run
� Find the next highest priority number
� Move pointer to that task which is ready to run
� Start that task

7

Implementation (2)
� Scheduling

� OS_Sched():
� Determine if a new, high priority task is ready to run
� Allocate storage for CPU status register
� Check if all (nested) ISRs have be done� Check if all (nested) ISRs have be done
� Context switch

� OS_SchedNew():
� Find a new task to run
� Look into the ready list
� Get the highest priority task’s priority number

� OS_TASK_SW():
� Start context switch
� Trigger software interrupt
� Call context switch handler OSCtxSw()

8

Implementation (3)
� Task related

� OSStartHighRdy()

� Load the context of the task

� Execute the task� Execute the task

� OSTaskChangePrio()

� OSTaskCreate()

� OSTaskDel()

� etc.

9

Other OS services
� Mailbox

� For data exchange between tasks

� A task that reads an empty mailbox is blocked

� Hold only one message in the mailbox� Hold only one message in the mailbox

� Queue

� For data exchanges between tasks

� Hold system-wide messages

� Fix-size memory partition

� Time-related functions

10

OS extensions and tools
� μC/TCP-IP

� μC/USB Host

� μC/USB Devices

μC/FS� μC/FS

� μC/Gui

� μC/Probe

� etc.

11

That’s it!

Questions?Questions?

12

